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New Guises for Old Dark-Matter Suspects

By EDWARD W. KOLB

NASA/Fermilab Theoretical Astrophysics Group
Fermi National Accelerator Laboratory, Box 500, Batavia, Illinois, 60510, USA

The three most popular suspects for particle dark matter are massive neutrinos, axions, and
supersymmetric relics. There are now well developed early-universe plots capable of placing
each of the suspects at the scene today to be the dark matter of the universe. Because Igor
Novikov has contributed in a fundamental way to the idea of a neutrino-dominated universe and
knows that story well, I thought he would like to hear something about the other two suspects.
But rather than retelling the standard story, I will point out that there may be new twists to
the dark matter story, and that old, familiar suspects may hide in unfamiliar guises.

1. Introduction

One of the simplest questions one might ask about the universe is, \What is it made
of?" It is somewhat of an embarrassment for modern cosmologists to be forced to answer
the question with the shrug of the shoulders. Although today we see more of the universe
than ever before, everything we do see reinforces the fact that there is more to the universe
than meets the eye. On scales as small as our galaxy to scales as large as the Hubble
radius, most of the mass of the universe seems to be invisible to us. The nature of the
ubiquitous dark matter is perhaps the most fundamental question in cosmology today.
Of particular interest to cosmologists interested in the early universe is the possibility

that some fraction of the dark matter is non-baryonic, in the form of some species of ele-
mentary particle. In most talks on particle dark matter, the �rst step in the investigation
is to round up the usual suspects for identi�cation. At the top of the most-wanted list is
the neutrino. Of all the suspects for dark matter, the neutrino is the only one known to
exist. A mass for the neutrino even as small as a few eV would mean that the neutrino
is dynamically important in understanding the formation and evolution of structure in
the present universe. Furthermore, without a known principle to require the neutrino to
be massless, the neutrino cannot use the alibi that it is naturally massless.y
There is still reasonable doubt about neutrinos as dark matter because it is very hard

to construct a scenario where light neutrinos, by themselves, are responsible for structure
formation. The problem is that by the time neutrinos would come to dominate the mass
of the universe and structure would begin to form, they would have travelled a rather
large distance since they �rst decoupled in the early universe. Because of collisionless
phase mixing (or Landau damping), initial perturbations on scales smaller than the free-
streaming length, 20Mpc� (30 eV=m�) for neutrinos of mass m� , would be suppressed.
Such a dark matter species with a relatively large velocity just before matter domination,
like a light neutrino species, is known as hot-dark matter, or hdm for short.
In order to develop large-scale structure from small initial seeds, most cosmologists

favor a type of dark matter known as cold dark matter, or cdm. The matter is called
cold, because at the time when the universe �rst became matter dominated the dark
matter was extremely nonrelativistic, and the collisionless damping length was smaller
than any scale of astrophysical interest. The list of dark-matter suspects is very long,
exceeding in number even the number of characters in a classic Russian novel. But two

y There is no symmetry principle that demands the neutrino must be massless in the way
that gauge invariance implies that the photon must be massless.
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2 EDWARD W. KOLB: New Guises for Old Dark-Matter Suspects

on the cdm list might be characterized as \prime" suspects: axions and supersymmetric
relics. These are the two I will discuss in this talk.
Before starting, it is useful to dispense with the preliminary de�nitions. It is convenient

to express the present mass density of a particle species in terms of its contribution to
something known as the critical density. If the density of a matter-dominated universe
is greater than the critical density, the universe will eventually recollapse, while if the
density is less than the critical density the universe will expand forever. In terms of
Hubble's constant H0 and Newton's constant G, the critical density is �C � 3H2

0=8�G =
1:88h2 � 10�29g cm�3. The annoying factor of h accounts for the imprecision in our
knowledge of Hubble's constant: H0 = 100h km s�1 Mpc�1. The energy density in some
species \i" is given as a ratio to the critical density, and denoted as 
i � �i=�C .

2. Supersymmetric relics

2.1. Supersymmetry and Supersymmetry breaking

There are two fundamental reasons for believing that nature is supersymmetric. The
�rst reason is that supersymmetry can rescue the standard electroweak model from the
embarrassment of �nely tuned coupling constants. The standard electroweak model em-
ploys fundamental scalars, usually refereed to as \Higgs" scalars, to break the gauge
symmetry spontaneously. But scalar particles have very bad ultraviolet behavior, which
has the e�ect of dragging the electroweak Higgs mass up to the mass scale of any encom-
passing theory, such as a grand-uni�ed theory. Thus, unless coupling constants are very
�nely tuned or some other dynamics enters the picture, light scalar masses (of order the
electroweak scale) would not be possible. Supersymmetry (susy) is an example of \some
other dynamics." Because of the relative factor of �1 between fermionic and bosonic
loops, the addition of fermionic loops can mitigate the bad ultraviolet behavior of scalar
loops. The way to realize this possibility is if for every boson there is a corresponding
fermion appearing in the calculation of the quantum corrections to the Higgs mass.
This correspondence between fermions and bosons implies that both fermions and

bosons appear in multiplets, and they are transformed into each other by supersymmetry
transformations. Thus, susy is intimately related to Poincare symmetry. In fact, the
commutator of susy transformations generates the momentum operator. susy is the only
know way to unify spacetime and the internal symmetries of the S-matrix. Thus, susy
seems to be a fundamental part of any attempt to unify gravity with the fundamental
forces. This aesthetic reason is the second motivation for susy.
The particular realization of susy I will consider is the supersymmetric extension

of the standard model. Although this model, the minimal supersymmetric standard
model (mssm), has many parameters in addition to the plethora of parameters of the
non-symmetric version of the standard model, it is su�ciently restrictive to have some
predictive power.
Of course in nature susy is broken|there is no massless fermionic photon for instance.

I will return to the question of susy breaking in a moment. But the �rst relevant
issue for susy dark matter is the existence of something known as R-parity, a discrete
multiplicative symmetry. The R-parity of a particle is given in terms of its spin S, baryon
number B and lepton number L, by R = (�1)3(B�L)+2S. Known particles all have even
R-parity, while their susy partners are all R-odd particles. If R-parity is conserved, then
the lightest R-odd color singlet (lrocs) must be stable|and hence a candidate for dark
matter. There are inconveniences with any theory if R-parity is broken. Rapid proton
decay, for instance. If one works hard enough these di�culties can be overcome, but
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the assumption of exact R-parity is very attractive and naturally leads to dark matter
candidates. So I will assume exact R parity.
Now let's return to the issue of susy breaking. The details of susy breaking will deter-

mine the identity of the lsp, as well as its mass and interaction strength. Unfortunately,
essentially nothing is known about susy breaking. The only reasonable constraint one
might imagine is that any susy-breaking Lagrangian terms must have mass dimension
less than four.y Since we have no other choice, let's consider all possible dimension-two
and dimension-three susy-breaking terms consistent with gauge and Lorentz symmetry:

�L(SUSY BREAKING) = �m2
1jH1j2 �m2

2jH2j2 �m2
12(H1H2 +H�

1H
�
2 )

� eQyLi(M2eQ)ij eQLj � euyRi(M2eu)ijeuRj � edyRi(M2ed )ij edRj � eLyLi(M2eL)ij eLLj � eeyRi(M2ee )ijeeRj
�H2

eQLi(huAu)ijeuRj �H1
eQLi(hdAd)ij edRj �H1

eLLi(heAe)ijeeRj
�1
2
M1

fB fB � 1

2
M2
gW agW a � 1

2
M3
fGafGa: (2.1)

The tilde superscript denotes the susy partner of familiar particles: ee is the selectron, ed
is the down squark, fGa are the gluino �elds,gW a and fB are the supersymmetric partners
of the familiar SU(2) and U(1) gauge �elds, and eQ and eL are SU(2) doublets containing
the SUSY partners of left-handed quarks and leptons. The �elds H1 and H2 are the
two Higgs necessary in susy. The parametersM2

:: and A:: are 3� 3 symmetric matrices.
The matrix A:: has mass dimension one. Note that the operators appearing in the �rst
two lines of (2.1) are operators of mass dimension two, while the last two lines contain
operators of mass dimension three.
The usual procedure is to choose a set of parameters including the constants appearing

in (2.1), requiring that the resulting low-energy theory leads to the usual standard model.
The choice of these mass parameters, along with the Higgsino mass parameter �, results

in a mass matrix for the neutralinos: the bino fB , the zino gW 3, and the Higgsinos fH0
1

and fH0
2 . In terms of the mass of the Z, the weak mixing angle �W , and tan� (the

ratio of the vacuum expectation values of the two Higgs �elds responsible for electroweak

symmetry breaking), the neutralino mass matrix in the basis (fB ; gW 3; fH0
1 ;
fH0
2 ) is given

as0
BB@

M1 0 �mZ cos� sin �W mZ sin� sin �W
0 M2 mZ cos� cos �W �mZ sin� cos �W

�mZ cos� sin �W mZ cos� cos �W 0 ��
mZ sin� sin �W �mZ sin� cos �W �� 0

1
CCA:
(2.2)

The susy-breakingmassesM1 andM2 are commonly assumed to be of ordermZ or larger,
and if the susy model is embedded in a grand uni�ed theory, then 3M1=M2 = 5�1=�2.
If we assume the relation between M1 and M2, then there are three parameters in the
neutralino mass matrix: �, tan�, and M1=2 (the zino-bino mass parameter).
Now the game is set: for a given set of parameters, diagonalize the mass matrix, �nd

the mass of the lightest supersymmetric particle and its �eld content (of course in general
it is a linear combination of the four neutralino �elds), determine its annihilation cross
section, and put the above information into the freeze-out machinery to determine the
relic abundance.
Di�erent groups who study the problem come up with slightly di�erent composite

y Dimension-four susy-breaking terms su�er from the bad ultraviolet behavior we are trying
to �x.
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sketches for the dark matter suspect. Some believe the particle content is mostly Hig-
gsino, while some �nd mostly bino. However just about all groups �nd a relatively large
mass for the suspect, between 30 and several hundred GeV.

In this part of the talky I would like to propose a di�erent picture for the wanted poster:
a particle of low mass (500 MeV to 1.6 GeV) and \photino-like," with an SU(2)�U(1)
content almost identical to the photon.
The motivation for this light photino comes from our lack of knowledge about susy-

breaking. Referring to the susy-breaking terms in (2.1) we see that there are dimension-
two and dimension-three terms. There are theoretical reasons to believe that dimension-
three terms might be much smaller than the dimension-two terms. It appears di�cult
to break susy dynamically in a way that produces dimension-three terms while avoiding
problems associated with the addition of gauge-singlet super�elds. In models where
susy is broken dynamically or spontaneously in the hidden sector and there are no
gauge singlets, all dimension-three susy-breaking operators in the e�ective low-energy
theory are suppressed compared to susy-breaking scalar masses by a factor of h�i=mPl,
where h�i is the vacuum expectation value of some hidden-sector �eld and mPl is the
Planck mass. Thus, dimension-three terms may not contribute to the low energy e�ective
Lagrangian. This would imply that at the tree level the gluino is massless, and the
neutralino mass matrix is given by (2.1) with vanishing (00) and (11) entries. However,
non-zero contributions to the gluino mass and the neutralino mass matrix come from two
sources: radiative corrections such as the top-stop loops for the gluino and neutralinos,
and \electroweak" loops involving higgsinos and/or winos and binos for the neutralinos
(but not for the gluino).

The generation of radiative gaugino masses in the absence of dimension-three susy
breaking was studied by Farrar and Masiero. They found (taking � >� 40 GeV) that as
the typical susy-breaking scalar mass, M0, varies between 100 and 400 GeV, the gluino
mass ranges from about 700 to about 100 MeV, while the photino mass ranges from
around 400 to 900 MeV. This estimate for the photino mass should be considered as
merely indicative of its possible value, since an approximation for the electroweak loop is
strictly valid only when � and M0 are much larger than mW . The other neutralinos are
much heavier, and the production rates of the photino and the next-lightest neutralino
in Z0 decay are consistent with all known bounds.

The conclusion is that light gluinos and photinos are quite consistent with present
experiments, and result in a number of striking predictions. One prediction is that the
photino e should be the relic R-odd particle, even though it may be more massive than
the gluino. This is because below the con�nement transition the gluino is bound with a
gluon into a color-singlet hadron, the R0, whose mass (which is in the 1 to 2 GeV range
when the gluino is very light) is greater than that of the photino. In this scenario, lsp
is an ambiguous term: the gluino is lighter than the photino, although the photino is
lighter than the R0. As discussed above, a more relevant term would be lrocs|lightest

R-odd color singlet.

However, models with light gauginos were widely thought to be disallowed because it
had been believed that in such models the relic density of the lightest neutralino would
exceed cosmological bounds unless R-parity would be violated allowing the relic to decay.
In the next subsection I will rehash that argument, and then point out how the restriction
can be evaded if the R0 mass is close to the e mass (here \close" means within a factor
of two).

y Reference to all the material presented here can be found in Farrar and Kolb (1996) and
Chung, Farrar, and Kolb (1996)
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2.2. Self-annihilation and freeze out

The reaction rates that determine freeze out will depend upon the e and R0 masses, the
cross sections involving the e and R0, and possibly the decay width of the R0 as well. In
turn the cross sections and decay width also depend on the masses of the e, eg and R0,
as well as the masses of the squarks and sleptons. We will denote the squark/slepton
masses by a common mass scale (expected to be of order 100 GeV). Even if the masses
were known and the short-distance physics speci�ed, calculation of the width and some
of the cross sections would be no easy task, because one is dealing with light hadrons.
Fortunately, our conclusions are reasonably insensitive to individual masses, lifetimes,
and cross sections, but depend crucially upon the R0-to-e mass ratio, denoted by r.
When we do need an explicit value of the photino mass m, the R0 mass M , or the
squark/slepton mass MeS, we will parameterize them by the dimensionless parameters
�8, r, and �S :

m = 800�8MeV; M = rm; MeS = 100�SGeV: (2.3)

The standard procedure for the calculation of the present number density of a thermal
relic of the early universe is to assume that the particle species was once in thermal
equilibrium until at some point the rates for self-annihilation and pair-creation processes
became much smaller than the expansion rate, and the particle species e�ectively froze
out of equilibrium. After freeze out, its number density decreased only because of the
dilution due to the expansion of the universe.
Since after freeze out the number of particles in a comoving volume is constant, it is

convenient to express the number density of the particle species in terms of the entropy
density, which in a comoving volume element is also constant for most of the history
of the universe. This number-density-to-entropy ratio is usually denoted by Y . If a
species of mass m is in equilibrium and nonrelativistic, Y is given simply in terms of
the mass-to-temperature ratio x � m=T as YEQ(x) = 0:145(g=g�)x

3=2 exp(�x), where
g is the number of spin degrees of freedom, and g� is the total number of relativistic
degrees of freedom in the universe at temperature T = m=x. Well after freeze out Y (x)
is constant|we will denote this asymptotic value of Y as Y1.
If self annihilation determines the �nal abundance of a species, Y1 can be found by

integrating the Boltzmann equation (dot denotes d=dt) _n+3Hn = �hjvj�Ai
�
n2 � n2EQ

�
,

where n is the number density, nEQ is the equilibrium number density, H is the expansion
rate of the universe, and hjvj�Ai is the thermal average of the annihilation rate.
There are no general closed-form solutions to the Boltzmann equation, but there are

reliable, well tested approximations for the late-time solution, i.e., Y1. Then with knowl-
edge of Y1, the contribution to 
h

2 from the species can easily be found. Let us specialize
to the survival of photinos assuming self-annihilation determines freeze out.
Calculation of the relic abundance involves �rst calculating the freeze-out value of

x, known as xf , where the abundance starts to depart from the equilibrium abun-
dance. Using standard approximate solutions to the Boltzmann equation gives xf =
ln(0:0481mPlm�0)� 1:5 ln[ln(0:0481mPlm�0)], where we have used g = 2, g� = 10, and
parameterized the nonrelativistic annihilation cross section as hjvj�Ai = �0x

�1. Us-
ing the diagram shown in Figure 1, �0 = 2 � 10�11�28�

�4
S mb, which leads to xf '

12:3 + ln(�38=�
4
S). The value of xf determines Y1:

Y1 =
2:4x2f

mPlm�0
' 7:4� 10�7��38 �4S : (2.4)

Once Y1 is known, the present photino energy density can be easily calculated: �e =
mne = 0:8�8GeV � Y1 2970 cm�3. When this result is divided by the critical density,
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�C = 1:054h2 � 10�5 GeVcm�3, the fraction of the critical density contributed by the
photino is found to be 
eh2 = 2:25� 108�8Y1. For Y1 in (2.4), 
eh2 = 167��28 �4S .

The age of the universe restricts 
eh2 to be less than one, so for �S = 1, the photino

must be more massive than about 10 GeV or so if its relic abundance is determined by
self-annihilation.

2.3. R0-catalyzed freeze out

Farrar and I pointed out that for models in which both the photino and the gluino
are light, freeze out is not determined by photino self annihilation, but by e  ! R0

interconversion. The basic point is that since the R0 has strong interactions, it will
stay in equilibrium longer than the photino, even though it is more massive. As long ase  ! R0 interconversion occurs at a rate larger than H , then through its interactions
with the R0; the photino will be able to maintain its equilibrium abundance even after
self annihilation has frozen out.
Griest and Seckel discussed the possibility that the relic abundance of the lightest

species is determined by its interactions with another species. They concluded that the
mass splitting between the relic and the heavier particle must be less than 10% for the
e�ect to be appreciable. We �nd that e  ! R0 interconversion determines the e relic
abundance even though the R0 may be twice as massive as the e. The di�erence arises
because Griest and Seckel assumed that all cross sections were roughly the same order
of magnitude. But in our case the R0 annihilation is about 1012 times larger than other
relevant cross sections.
I will now consider in turn the reactions we found to be important in our scenario. The

diagrams for the individual constituent processes can be found in Figure 1. However,
as we shall see, it is not a simple task to go from the constituent diagrams to the cross
sections and decay width.ee ! X: For photino self-annihilation at low energies the �nal state X is a lepton-
antilepton pair, or a quark-antiquark pair which appears as light mesons. The process
involves the t-channel exchange of a virtual squark or slepton between the photinos,
producing the �nal-state fermion-antifermion pair. (See the upper third of Figure 1.)
In the low-energy limit where the mass MeS of the squark/slepton is much greater thanp
s, the photino-photino-fermion-antifermion operator appears in the low-energy theory

with a coe�cient proportional to e2i =MeS2, with ei the charge of the �nal-state fermion.
Also, as there are two identical fermions in the initial state, the annihilation proceeds as
a p-wave, which introduces a factor of v2 in the low-energy cross section. The resultant
low-energy photino self-annihilation cross section is:

hjvj�eei = 8��2EM
X
i

q4i
m2

MeS4
v2

3
' 2:0� 10�11 x�1

�
�28�

�4
S

�
mb; (2.5)

where we have used for the relative velocity v2 = 6=x with x � m=T , and qi is the
magnitude of the charge of a �nal-state fermion in units of the electron charge. For the
light photinos we consider, summing over e, �, and three colors of u, d, and s quarks
leads to

P
i q

4
i = 8=3.

R0R0 ! X : In R0 self-annihilation, at the constituent level the relevant reactions areeg+eg ! g+g and eg+eg ! q+�q (see the middle third of Figure 1), which are unsuppressed
by any powers ofMeS, so the cross section should be typical of strong interactions. In the

nonrelativistic limit we expect the R0R0 cross section to be comparable to the �pp cross
section, but with an extra factor of v2, accounting for the fact that there are identical
fermions in the initial state so annihilation proceeds through a p-wave. There is some en-
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Figure 1. Feynmann diagrams for the constituent processes determining the relic photino
abundance. The top left diagram is for e self annihilation, and on the top right is the e�ective
low-energy operator for that process. The two diagrams in the middle are the diagrams for
R0 self annihilation. Finally in the lower left-hand corner is the diagram for the e  ! R0

interconversion processes (all interconversion processes can be obtained from crossings of this
diagram), and on the lower right-hand side is the e�ective low-energy operator.

ergy dependence to the �pp cross section, but it should be su�cient to consider hjvj�R0R0i
to be a constant, approximately given by hjvj�R0R0i ' 100v2mb = 600x�1 r�1mb,
where we have used for the relative velocity v2 = 6T=M = 6=(rx), with x � m=T .
We should note that the thermal average of the cross section might be even larger

if there are resonances near threshold. In any case, this cross section should be much
larger than any cross section involving the photino, and for the relatively small values of
r we employ it will ensure that the R0 remains in equilibrium longer than the e, greatly
simplifying our considerations.eR0 ! X: This is an example of a phenomenon known as co-annihilation whereby
the particle of interest (in our case the photino) disappears by annihilating with another
particle (here, the R0). Of course co-annihilation also leads to a net decrease in R-
odd particles. We can estimate the cross section for eR0 ! X in terms of the e self
annihilation cross section by comparing the lower third of Figure 1 to the upper third:

hjvj�eR0i ' �S
�EM

4

3

2

8=3

M

m

3

v2
hjvj�eei; (2.6)

where the ratio of �'s arises because the short-distance operator for co-annihilation is
proportional to e2i g

2
S rather than e4i , the second factor is the color factor coming from

the gluino coupling, and the third factor comes from the ratio of
P

i q
2
i =
P

i q
4
i for the

participating fermions. We have replaced m2 appearing in (2.5) by mM , although the
actual dependence on m and M may be more complicated. Finally, the annihilation is
s-wave so there is no v2=3 suppression as in photino self-annihilation.
Although the short-distance physics is perturbative, the initial gluino appears in a

light hadron, and there are complications in the momentum fraction of the R0 carried
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Table I: Cross sections and the decay width used in the calculation of the relic photino
abundance. The dimensionless parameters �8 and �S were de�ned in (2.3), and F(r) was
de�ned below (2.9). The coe�cients A, B, and C reect uncertainties involving the calculation
of hadronic matrix elements.

Process Cross section or width

R0 self annihilation: hjvj�R0R0 i 600 x�1 r�1 mbe self annihilation: hjvj�eei 2:0 � 10�11 x�1
�
�28�

�4
S

�
mb

co-annihilation: hjvj�eR0 i 1:5 � 10�10 r
�
�28�

�4
S A

�
mb

R0 decay: �
R0!e�� 2:0 � 10�14 F(r) [�58�

�4
S B] GeVe { R0 conversion: hjvj�R0�i 1:5 � 10�10 r

�
�28�

�4
S C

�
mb

by the gluino and other non-perturbative e�ects. For our purposes it will be su�cient to
account for the uncertainty by including in the cross section an unknown coe�cient A,
leading to a �nal expression

hjvj�eR0i ' 1:5� 10�10 r
�
�28�

�4
S A

�
mb: (2.7)

R0 ! e�+��: In what we call interconversion processes, there is an R-odd particle in
the initial as well as in the �nal state. Although the reactions do not of themselves change
the number of R-odd particles, they keep the photinos in equilibrium with the R0s, which
in turn are kept in equilibrium through their self annihilations. An example is R0 decay.
It can occur via, e.g., the gluino inside the initial R0 turning into an antiquark and a
virtual squark, followed by squark decay into a photino and a quark. In the low-energy
limit the quark{antiquark{gluino{photino vertex can be described by the same type of
four-Fermi interaction as in co-annihilation (see Figure 1). One expects on dimensional
grounds a decay width �0 / �EM�SM

5=MeS4. The lifetime of a free gluino to decay
to a photino and massless quark-(anti)quark pair was computed by Haber and Kane.
However this does not provide a very useful estimate when the gluino mass is less than
the photino mass.
In an attempt to account for the e�ects of gluino-gluon interactions in the R0, which

is necessary for even a crude estimate of the R0 lifetime, Farrar developed a picture
based on the approach of Altarelli et al.: The R0 is viewed as a state with a massless
gluon carrying momentum fraction x, and a gluino carrying momentum fraction (1�x);y
having therefore an e�ective massM

p
1� x. The gluon structure function F (x) gives the

probability in an interval x to x+ dx of �nding a gluon, and the corresponding e�ective
mass for the gluino. One then obtains the R0 decay width (neglecting the mass of �nal
state hadrons):

�(M; r) = �0(M; 0)

Z 1�r�2

0

dx (1� x)5=2F (x) f(1=rp1� x); (2.8)

where in this expression the factor �0(M; 0) is the rate for a gluino of mass M to decay
to a massless photino, and f(y) = [(1 � y2)(1 + 2y � 7y2 + 20y3 � 7y4 + 2y5 + y6) +
24y3(1 � y + y2) log y] contains the phase space suppression which is important when

y Of course there should be no confusion with the fact that in the discussion of the R0 lifetime
we use x to denote the gluon momentum fraction whereas throughout the rest of the paper x
denotes m=T .
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the photino becomes massive in comparison to the gluino. Modeling K� decay in a
similar manner underestimates the lifetime by a factor of 2 to 4. This is in surprisingly
good agreement; however caution should be exercised when extending the model to R0

decay, because kaon decay is much less sensitive to the phase-space suppression from the
�nal state masses than the present case, since the range of interest will turn out to be
r � 1:2 � 2:2. For r in this range, taking F (x) � 6x(1 � x) leads to an approximate
behavior

�
R0!e�+�� = 2:0� 10�14 F(r) GeV [�58�

�4
S B] ; (2.9)

where F(r) = r5(1� r�1)6, and the factor B reects the overall uncertainty. We believe
a reasonable range for B is 1=30 <� B <� 3. Lattice QCD calculation of the relevant
hadronic matrix elements would allow a more reliable determination of B.
R0� ! e�: The short-distance subprocess in this reaction is q + eg ! q + e, again

described by the same low-energy e�ective operator as in co-annihilation and R0 decay.
At the hadronic level the matrix element for R0� ! eX is the same as for R0e ! �X
for any X , evaluated in di�erent physical regions. Thus the di�erence between the
various cross sections is just due to the di�erence in uxes and �nal state phase space
integrations, and variations of the matrix element with kinematic variables. Given the
crude nature of the analysis here, and the great uncertainty in the overall magnitude of
the cross sections, incorporating the constraints of crossing symmetry are not justi�ed
at present. We will therefore use the same form as for (2.7), letting C parameterize the
hadronic uncertainty in this case: hjvj�R0�i ' 1:5� 10�10 r

�
�28�

�4
S C

�
mb.

This completes the discussion of the lifetimes, cross sections, and their uncertainties.
The results are summarized in Table I.
Once the cross sections and decay rate is known, one can develop the Boltzmann

equations for the system and numerically solve them to �nd the relic abundance. This is
being studied by Chung, Farrar, and Kolb. But for the purpose of illustrating the main
issues, it will su�ce to compare equilibrium reaction rates to the expansion rate near
freeze out.
To obtain an estimate of when the rates will drop below the expansion rate, we will

assume all particles are in lte (local thermodynamic equilibrium). In lte a particle of
mass m in the nonrelativistic limit has a number density

n =
g

(2�)3=2
(mT )3=2 exp(�m=T ) = g

(2�)3=2
(T=m)3=2m3 exp(�m=T ): (2.10)

Here g counts the number of spin degrees of freedom, and will be 2 for the R0 and thee. Of course all rates are to be compared with the expansion rate. In the radiation-
dominated universe with g� � 10 degrees of freedom

H = 1:66g
1=2
� T 2=mPl = 2:8� 10�19x�2

�
�28
�
GeV: (2.11)

There are two striking features apparent when comparing the magnitudes of the equilib-
rium reaction rates in Table II. The �rst feature is that the numerical factor in R0R0 ! X
is enormous in comparison to the other numerical factors. This simply reects the fact
that R0 annihilation proceeds through a strong process, while the other processes are all
suppressed by a factor of MeS�4.
The other important feature is the exponential factors of the rates. They will largely

determine when the photino will decouple, so it is worthwhile to examine them in detail.
The exponential factor in ee ! X is simply exp(�m=T ), which arises from the equi-

librium abundance of the e. It is simple to understand: the probability of one e to �nd
another e with which to annihilate is proportional to the photino density, which contains
a factor of exp(�m=T ) = exp(�x) in the nonrelativistic limit.
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Table II: The ratio of the equilibrium reaction rates to the expansion rate for the indicated
reactions. Shown in [� � �] is the scaling of the rates with unknown parameters characterizing the
cross sections and decay width.

Process �EQ=H Scaling

ee ! X 1:2� 107 x�1=2 exp(�x) [�38�
�4
S ]

R0R0 ! X 3:5� 1020x�1=2 r1=2 exp(�rx) [�8]eR0 ! X 8:9� 107 x1=2 r5=2 exp(�rx) [�38�
�4
S A]e�+�� ! R0 7:1� 104 x2 r3=2 F(r) exp[�(r � 1)x] [�38�
�4
S B]e� ! R0� 9:6� 106 x1=2 r5=2 exp[�(r � 1)x] exp(�0:175��18 x) [�

3=2
8 ��4S C]

~ ~

Figure 2. Equilibrium reaction rates divided by H for r = 1:25 and r = 2:0, assuming
�8 = �S = 1, and that the factors A = B = C = 1. The rates can be easily scaled for other
choices of the parameters.

The similar exponential factor in R0R0 ! X is also easy to understand. An R0 must
�nd another R0 to annihilate, and that probability is proportional to exp(�M=T ) =
exp(�rx).
The process eR0 ! X is also exothermic, so the only exponential suppression is the

probability of a e locating the R0 for co-annihilation, proportional to the equilibrium
number density of R0, which is proportional to exp(�M=T ) = exp(�rx)
In e�+�� ! R0 the exponential factor is exp[�(M �m)=T ] = exp[�(r � 1)x], which

is just the \Q" value of the decay process.
For the process e� ! R0�, it is necessary for the collision to have su�cient center-

of-mass energy to account for the e{R0 mass di�erence, which accounts for a factor of
exp[�(M �m)=T ]. The number density of target pions is exp(�m�=T ), so this factor
is also present. Combining the two factors leads to the overall factor appearing in Table
II: exp[�(M �m+m�)=T ] = exp[�(r � 1)x] exp(�0:175��18 x).
Graphs of the reaction rates as a function of r is shown in Figure 2. There are several

things to notice from the graphs: 1) The R0 self-annihilation rate is always larger than
the other rates. This means that the assumption that the R0 is in equilibrium during e
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~
~
~

Figure 3. Assuming e freeze out is determined by e $ R0 interconversion, this �gures shows

as a function of r the values of [�
3=2
8 ��4S C] required to give the indicated values of 
eh2. The

uncertainty band is generated by allowing �8 to vary independently over the range 0:5 � �8 � 2.

freeze out is a good approximation for the values of r considered here. 2) Even for r as
large as r = 2, the interconversion rates seem to be (slightly) more important than e self
annihilation in keeping photinos in equilibrium. 3) The process e�  ! R0� seems to be
the most important process for r < 2. Detailed numerical integration of the Boltzmann
equation by Chung, Farrar, and Kolb con�rms this. 4) The freeze-out temperature is
very sensitive to the value of r. This traces to the exponential sensitivity of the reaction
rates upon r. We will make use of this last feature to �nd a cosmologically acceptable
range of r.
Assuming that e�  ! R0� does determine the e relic abundance, Figure 3 shows the

sensitivity of 
eh2 to r. From this �gure we can draw some very interesting conclusions.

If we assume that [�
3=2
8 ��4S C] < 102, then r must be less than 1.9. If we demand

that the relic photinos are dynamically important (say 
eh2 � 10�2) then r � 1:2 if

[�
3=2
8 ��4S C] > 0:1. Finally, if we choose our best guess [�

3=2
8 ��4S C] � 1 and 
eh2 � 0:25,

then the allowed range of r is 1:4 <� r <� 1:6.

2.4. Testing the scenario

Direct detection of light photinos is not easy. the interaction cross section decreases
with photinos mass, and more importantly, the kick they would give to a massive target
nucleus also decreases with decreasing photino mass.
The case for light photinos hinges upon laboratory experiments. The scenario depends

upon the existence of the R0, the gluino|gluon bound state,y with a mass roughly 1.5
times the photino mass. If the R0 can be discovered (and after all, the discovery of a
1.5 GeV hadron does not sound impossible), from its decay one can learn the e mass,
and hence r, as well as the parameters of the short-distance matrix element. While there
is no shortage of candidates for relic dark matter particle species, this proposal extends
the idea that photinos may be the dark matter to a previously excluded mass range by
incorporating new reactions that determine the photino relic abundance. If this scenario

y In fact, one suggested title for this talk is \The R0: sglueball or screwball?"
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is correct, direct and indirect detection of dark matter might be even more di�cult than
anticipated. However the scenario requires the existence of low-mass hadrons, which can
be produced and detected at accelerators of moderate energy. Thus particle physics ex-
periments will either disprove this scenario, or make light photinos the leading candidate
for dark matter.
So the next step is obvious: �nd the R0:

3. Relic axions

3.1. The axion

The axion story begins with PQ symmetry breaking, which occurs when a complex
scalar �eld ~� with non-zero PQ charge develops a vacuum expectation value. This PQ
symmetry breaking can be modeled by considering a potential of the standard form

V (~�) = �
�
j~�j2 � f2a=2

�2
. The axion is the Nambu{Goldstone degree of freedom resulting

from spontaneous breaking of the global symmetry. However, since the PQ symmetry
is anomalous, it is broken explicitly by QCD instanton e�ects, leading to a mass for
the axion. In general the instanton e�ects respect a residual ZN symmetry, and the
axion develops a potential due to instanton e�ects of the form V (a) = m2

a(fa=N)2[1 �
cos(Na=fa)], where ma = �QCD=fa. The axion �eld is often represented in terms of an
angular variable � � Na=fa, and if � is taken as the dynamical variable, its potential
(for N = 1) is

V (�) = m2
a(T )f

2
a (1� cos �): (3.12)

The above description is only valid at zero temperature. Because QCD instantons are
large, with a size set by ��1QCD, their e�ects are strongly suppressed at high temperatures.
Thus, after PQ symmetry breaking at T � fa, but before QCD e�ects are important
around TQCD, the axion is e�ectively massless. For T � �QCD, the temperature depen-
dence of the axion mass scales as m2

a(T ) / (T=T�)
�n, where n = 7:4� 0:2

3.2. The standard scenario

When the �eld �(x) is created during the Peccei-Quinn symmetry breaking phase tran-
sition at T � fa, it should be uncorrelated on scales larger than the Hubble radius at
that time.
The usual assumption in axion cosmology is that PQ symmetry is broken before or

during ination, and the reheat temperature after ination is too low to restore the PQ
symmetry. This would mean that ination will \smooth" the axion �eld on scales larger
than the Hubble radius today. While this may indeed be the case, I will not make that
assumption here. Since Tkachev and I �rst did the work reported here, Kofman, Linde,
and Starobinski, as well as Tkachev, have made the interesting observation that symmetry
restoration and breaking in the preheating phase of ination may have interesting e�ects.
Just one of the interesting e�ects may be to restore PQ symmetry after ination, even
if the reheat temperature is too low to do so. This means that PQ symmetry will be
restored and broken after ination, producing a spatially dependent axion �eld. While
the dust has yet to settle on the issue, it is clear that it is na��ve to think that ination
automatically results in a smooth axion �eld. So it is worthwhile to explore the possibility
that the axion �eld is misaligned on scales larger than the Hubble radius at the time of
the QCD transition when the axion mass switches on. In this part of the talky I would
y Reference to all the material presented here can be found in Kolb and Tkachev (1993,

1994,1996)
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like to propose another di�erent picture for the wanted poster: axions that are clumped
today within our galaxy, rather than uniformally distributed.
Assuming an initially chaotic axion �eld after the PQ transition, as the temperature

decreases and the Hubble radius grows the �eld becomes smooth on scales up to the
Hubble radius. This continues until T = T1 � 1 GeV when the axion mass \switches
on," i.e., when ma(T1) � 3H(T1), and the axion mass begins to become important in
the equations of motion. Coherent axion oscillations then transform uctuations in the
initial amplitude of the axion �eld into uctuations in the axion density.
Since the initial amplitude of the coherent axion oscillations on the scale of the Hubble

radius is uncorrelated, one expects that typical positive density uctuations on this scale
will satisfy �a � 2��a, where ��a is mean cosmological density of axions. These overdense
regions were called axion miniclusters by Hogan and Rees. At the temperature of equal
matter and radiation energy density, TEQ = 5:5
ah

2 eV, non-linear uctuations will
separate out as miniclusters with �MC � 10�14 g cm�3. The minicluster mass will be
of the order of the axion mass within the Hubble radius at temperature T1, MMC �
10�9M�. The radius of the cluster is RMC � 1013cm, and the gravitational binding
energy will result in an escape velocity of ve=c � 10�8.
It is easy to understand how a minicluster forms. First consider the evolution of the

background axion density. In the limit that the initial misalignment angle is constant
on all scales, the axion energy density scales with temperature as ��a(T ) = 3TEQs=4 for
T � �QCD, where s / T 3 is the entropy density and TEQ is the temperature of equal
matter and radiation energy densities.
Now suppose that there is a region with axion over-density, �a = (1 + �)��a. Then

the matter density in that region will dominate the radiation density at a temperature
T� = (1 + �)TEQ. If � is larger than unity, then that region will separate out from the
cosmological expansion, gravitationally collapse, relax, and form a minicluster with the
approximate density it had at T�. A detailed study of this leads to a �nal minicluster
density of

�mc ' 140�3(1 + �)��a(Teq) � 3� 10�14�3(1 + �)
�

ah

2
�4
g cm�3: (3.13)

Even a relatively small increase in � is important because the �nal density depends upon
�4 for � >� 1.

3.3. Non-linear axion dynamics and production of miniclusters

Igor Tkachev integrated the �eld equations near the QCD transition with various choices
for initial conditions where the axion �eld is inhomogeneous on scales larger than the
Hubble radius.
In our numerical investigations of the dynamics of the axion �eld around the QCD

epoch we found that as the oscillations commence, important, previously neglected, non-
linear e�ects can result in the formation of transient soliton-like objects we called axitons.
The non-linear e�ects result in regions with � much larger than unity, possibly as large
as several hundred, leading to enormous minicluster densities. We also found that the
minicluster mass scale is set by the total mass in axions within the Hubble radius at
a temperature around T = T1 � 1 GeV when axion mass is equal to H . Since this
temperature is somewhat higher than �QCD, the e�ect is to lower the minicluster mass
from the estimate of Hogan and Rees to about 10�12M�.

3.4. Detecting axion miniclusters

If a large fraction of axions end up in miniclusters (and in our numerical simulations that
is what we found), then the local axion density may be very clumpy. This would mean
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Figure 4. This is a two-dimensional slice through a three dimensional box of Tkachev's sim-
ulation showing the distribution of axion energy densities for T � Teq. The height of the plot
corresponds to � = ��a=��a = 20, and the width to a length of 4H�1(T1) (this corresponds to a
comoving length of about 0.25 pc). The miniclusters are clearly seen.

that direct searches for axions would not be very e�cient unless we just happened to be
passing through a minicluster.
However it may be possible to detect miniclusters through femtolensing or picolensing.

The basic idea is that if gamma-ray bursts are at cosmological distances, then miniclusters
could act as gravitational lenses. For source and lens of cosmological distances, the
Einstein ring radius is RE � 5 � 1010(M=10�12M�)

1=2cm. This means that if two
gamma-ray burst detectors are separated by distances larger than RE , typically one
detector will be within the Einstein ring and the other will not. Measurement of di�erent
uxes in two widely separated detectors would extend the detectable range of lens masses
to M < 10�7M�. If the angular separation of the images of a point-like source is
comparable to the wavelength of the light, interference between the lensed images will
lead to a distinctive fringe pattern both in coordinate space and in energy spectrum.
The interference pattern in the energy spectrum will depend upon the location of the
detector. Since well separated detectors will see di�erent patterns, there is a distinctive
signature of the e�ect.

4. Conclusions

Although there are solid, well motivated scenarios that lead to one of several suspects
forming cold dark matter, one must explore vigorously the possibility of a non-standard
scenario for standard dark-matter suspects (such as susy and axions). It would be a
crime if we fail to apprehend dark matter just because a prime suspect appears in an
unfamiliar guise.

I would like to acknowledge collaboration with Glennys Farrar and Daniel Chung on
the light-photino work reported here, and collaborations with Igor Tkachev on the axion-
minicluster work. This work was supported by the Department of Energy and by NASA
under Grant NAG5{2788.
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